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Abstract. One of the earliest proposed applications of quantum computers was
the quadratic speedup of classical brute force search represented by Grover’s al-
gorithm. Since then various successor algorithms have been applied to a variety
of oracle problems including collision finding and claw finding. Such algorithms
have typically been analyzed in terms of query complexity, which is a somewhat
unphysical model of the cost of computation in the real world. Other models of
these algorithms, such as the quantum circuit model and the quantum random
access machine model of computation give more realistic, but sometimes con-
flicting answers regarding how much advantage the quantum algorithm provides
over the corresponding classical algorithm.
We instead adapt Bennett’s Brownian model of computation to directly esti-
mate the cost of both classical and quantum operations in terms of time, energy,
and memory. We apply this model to compare the best known quantum algo-
rithms for collision search and preimage search to their classical counterparts.
In the collision search case, our analysis agrees with previous analysis, based
on the gate model of quantum computation, suggesting that quantum compu-
tation provides no improvement over the best known classical algorithm. More
surprisingly, we find that a Brownian implementation of randomized classical
search can achieve the same tradeoffs between time, memory and energy as
Grover’s algorithm (at least up to logarithmic factors.) This implementation
uses thermal noise to drive a random walk within the internal state of a mostly
unpowered circuit.

Key words: Reversible Computation, Quantum Computation, Collision Search,
Preimage Search, Grover’s algorithm

1 Introduction

2 Bennett’s Brownian Computation Model

In contrast to ballistic models of computation (e.g. [1]), which are generally assumed
to be unrealistic, Brownian computers [2, 3] are assumed to operate near thermal equi-
librium at a finite temperature, T . As in the case of ballistic computers, to avoid being
constrained to consume at least kT ln2 energy per bit operation by the Landauer limit
[4], the program for a Brownian computer is encoded as a reversible circuit. In the
absence of any driving force, the state of the computing system at any given time may
be described as a random walk on that circuit, with state transitions that undo a useful
computation happening as often as those that perform it. In order for computations
to proceed forward at a nonzero expected rate, a driving force, dissipating an energy
of ε per gate is imposed. This leads forward transitions within the circuit to occur e

ε
kT

times more often than backward transitions, resulting in a net forward computation
rate proportional to ε

kT for ε small compared to kT .
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Some additional costs are required in order for Brownian computation to be achieved
fault-tolerantly. Energy barriers must be imposed to prevent transitions to physical
states outside the reversible circuit, representing the prescribed computation path. In
order to suppress the probability of such undesirable transitions so that a circuit of
size G can be completed with high probability, the size of these energy barriers must
at least be on the order of kT ln(kTε ·G). Additionally, dissipating a “latching” energy

of about kT ln(kTε ) during the computation’s final step is required to suppress back-
wards transitions once the computation has reached its halting state. These costs are
described in detail in [3].

The above costs may, however, be assumed to be negligible in a number of important
cases: In particular, the latching energy will be negligible when ε

kT is at least logarith-
mically more than 1

G . Additionally, establishing energy barriers to non-computational
paths is likely to be a negligible cost when a description of the circuit can be expressed
in a physically compact form, for example, using looping constructs. More precisely, if
we assume that the circuit can be compressed into a program of size m0, then the cost
of imposing energy barriers should be on the order of m0 · kT ln(kTε · G). This cost is

negligible as long as ε
kT is significantly larger than e−

G
m0 .

In fact, the initialization cost may be less than this, since it may be more proper to
think of the initialization process as rearranging the energy barriers already present in
the available raw materials for constructing our computer. The cost is then determined
by the Landauer limit and the information content of the circuit, including appropri-
ately large energy barriers. Since the size of these barriers does not need to be precislely
specified, but merely bounded above kT ln(kTε ·G), the information content of the cir-
cuit may grow sublogarithmically with G. All we can say with confidence is that the
information content of the circuit is at least m0, and therefore the initialization energy
is at least on the order of m0 · kT .

Thus far, we have only given asymptotic scalings for the relation between gate time
and per-gate energy, assuming a fixed temperature. However, if we make the heuristic
assumption that the rate at which gates are traversed due to Brownian motion is no
more than h

4kT , following the Margolus-Levitin theorem [5], then we can specify a lower
bound, independent of temperature, on the per-gate energy ε required to perform G
sequential operations in time t:

ε >
hG

4t
.

Finally, it is worth commenting on the feasibility of Brownian computation for
quantum computers. Brownian computation was originally proposed as a way to im-
prove the thermodynamic efficiency of classical computation. It should be noted that
many of the techniques that have been proposed for fault tolerance in quantum com-
puation are thermodynamically irreversible, in particular, syndrome measurement and
magic state preparation. These techniques cannot be used in a Brownian mode of com-
putation. However, there are some proposed techniques, such as the use of Fibonacci
anyons for universal quantum computation [?], that may be able to achieve fault tol-
erance without requiring significant thermodynamic irreversibility (although even in
such cases, the cost of fault tolerance is believed to be polylogarithmic in the size of
the circuit.) We will therefore optimistically assume that quantum operations can be
implemented in a Brownian fashion.

We now proceed to analyze the asymptotic complexity of classical and quantum
algorithms for collision and preimage search. We will generally ignore logarithmic fac-
tors. As we are engaged in asymptotic analysis, units are strictly speaking irrelevant,
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but assuming natural units (e.g. c = ~ = k = 1) may be desirable to keep constant
factors small.

3 Collision Search

The best known classical algorithm for finding collisions in a random function is the
parallel collision search algorithm of Van Oorschot and Wiener [6]. If the range of the
function is of order N , then, given M parallel processes each with memory O(1) the

algorithm can find a collision in expected serial depth O(
√
N
M ). The communication

cost between threads is negligible compared to overall computational costs as long as
M is smaller than

√
N by at least a logarithmic factor.

An improvement over classical collision search has been claimed by Brassard Høyer
and Tapp (BHT [7]). Their algorithm is a serial process consisting of O(N

1
3 ) opera-

tions and requires a memory of size N
1
3 . This can be generalized to arbitrary memory

size, M < O(N
1
3 ), giving a serial complexity of O

(√
N
M

)
. The BHT algorithm may

be further generalized to a parallel algorithm involving p parallel processors and a

shared memory M , where p < M < O
(

(Np)
1
3

)
.1 in this case, the serial complexity is

O
(√

N
Mp

)
.

Bernstein [8] has observed that the BHT algorithm, even if parallelized, does not
improve upon the Van Oorschot - Wiener algorithm, when measured in terms of mem-

ory and serial depth. Since the BHT algorithm also requires O
(√

N
M

)
random access

queries to a memory of size M , each requiring O(M) gates, it also does not improve
upon Van Oorschot Weiner algorithm when evaluated in terms of circuit size and depth
(See Beals et al. [9] for a more thorough analysis.) However, BHT does represent an
improvement over all classical algorithms in terms of query complexity. Furthermore,
the Quantum RAM model of Giovanetti et al. [10] gives a theoretical argument that
despite their large gate complexity, quantum memory access operations can be per-
formed at logarithmic energy cost. A question therefore remains whether there exists
a physically realistic model of computation where BHT is actually cheaper than the
classical algorithms for the same problem. However, if there is such a model, it is not
the Brownian model of computation, as we proceed to show:

We first analyze the quantum algorithm, calculating the total energy required to
perform a collision search, given a maximum time limit t and a maximum memory size
M . (Here, we assume, following the quantum RAM model, that the energy complex-
ity of the BHT is dominated by oracle queries rather than memory access): The per
operation energy ε scales with the serial complexity divided by t, i.e.:

εquant = O


√

N
Mp

t

 . (1)

The total energy E is then the product of the parallelism, the serial complexity,
and the per operation energy, i.e.:

1 Note this also implies that M < O
(√

N
)

. The constraint arises from the requirement that

the serial complexity, O
(

M
p

)
, of filling a table of size M with oracle values does not exceed

the serial complexity O
(√

N
Mp

)
of Grover search.
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Equant = O

p ·√ N

Mp
·

√
N
Mp

t

 = O

(
N

Mt

)
. (2)

Now, we analyze the classical algorithm: The per operation energy again scales with
the serial complexity, i.e.:

εcl = O

(√
N

Mt

)
. (3)

The total energy E is again the product of the parallelism (In this case p = O(M)),
the serial complexity, and the per operation energy, i.e.:

Ecl = O

(
M ·
√
N

M
·
√
N

Mt

)
= O

(
N

Mt

)
. (4)

Thus, even under optimistic assumptions within the Brownian model of compu-
tation, we find that quantum computers provide no advantage in terms of energy,
memory, or time, for solving the collision search problem.

4 Preimage Search

Grover’s algorithm finds preimages in a function with domain size N in serial com-
plexity O(

√
N). Grover’s algorithm can be generalized to take advantage of M parallel

processes each mith memory O(1), in which case the serial complexity is reduced to

O
(√

N
M

)
. If we impement Grover’s algorithm in a Brownian fashion, we find that

εquant = O


√

N
M

t

 , (5)

and,

Equant = O

M ·√N

M
·

√
N
M

t

 = O

(
N

t

)
. (6)

A näıve Brownian implementation for classical search would divide the key space
among M parallel processes, each of which would deterministically step throughN

M keys
searching for the correct one. Such a deterministic classical algorithm would require,

εdet = O

(
N

Mt

)
,

and,

Edet = O

(
M · N

M
· N
Mt

)
= O

(
N2

Mt

)
.

This already allows us to compete with Grover’s algorithm if we allow ourselves
a memory of size O(N). However, we can exploit the structure, or rather the lack of
structure, of the search problem to improve upon this figure. In particular, rather than
deterministically stepping through the keys, dissipating a driving energy each time,
we can simply allow Brownian motion to drive the system on a random walk through
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the keyspace. We will still require a latching energy to end the computation, once the
correct key has been found, and an initialization energy to create the necessary energy
barriers to prevent unwanted transitions from occuring.

If the search is implemented by M parallel processes, each of size O(1), then each
process must reach N

M keys. This requires the processes to operate at a temperature:

kT = O

(
N

Mt

)
. (7)

The initialization energy should be of order MkT i.e.:

Einit = O

(
M · N

Mt

)
= O

(
N

t

)
.

This is identical to the energy required by a Brownian implementation of Grover’s
algorithm. All that remains is to show that the latching energy is negligible. Indeed,
we find that the energy required to suppress backwards transitions from the final state
for a time of order t is O (kT ln(tkT )) = O

(
N
Mt ln

(
N
M

))
. This is negligible as long as

M is at least logarithmic in N .
Thus, as with collision search, the quantum and classical preimage search algorithms

appear to offer the same tradeoffs between time, energy , and memory:

Ecl = Equant = O

(
N

t

)
. (8)

5 Preimage Search at constant Power and Temperature /
Energy Scale

In contrast to the collision search case, matching the time/ memory/ energy tradeoffs of
Grover’s algorithm with a classical search requires a somewhat unrealistic assumption.
We assume that if a computational process can be accomplished at a temperature T in
a time t, then an isomorphic computation can also be accomplished at a temperature
αT in a time T

α . This would be true if physics were scale invariant, but the physics
of the real world is almost certainly not scale invariant. A more realistic model would
therefore restrict the range of temperatures where a given computation is considered
feasible. We will therefore repeat the analysis of the previous section assuming a fixed
temperature T . For added realism, in addition to memoryM , and time t, we will express
the resources required for search in terms of power, P = E

t , rather than energy, since
a fixed power budget is a more common limitation than a fixed energy budget.

From Equation 8 we find:

N = O
(
Pt2

)
.

Plugging this into Equation 7 gives us:

M = O

(
Pt

T

)
.

We can now calculate time and memory requirements in terms of T , P , and N :

tcl = O

(√
N

P

)
(9)

Mcl = O

(√
NP

T

)
(10)
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A similar analysis may be done in the quantum case. Here we use Equation 5 as a
lower bound for T . If the per gate energy ε exceeds kT , we enter the thermodynamic
regime of irreversible computing, as opposed to Brownian computing, at which point
the time per gate not only fails to further decrease with increasing ε, but must in fact
increase to prevent the waste heat from heating the computing system to a temperature
higher than T . Combining this bound with equation 6 then yields the following time
and memory requirements for Grover search at fixed power and temperature:

tquant = O

(√
N

P

)
(11)

Mquant = O

(
P

T 2

)
(12)

Thus we find, fixing power and temperature, that our classical search strategy re-
covers the squareroot time scaling of Grover’s algorithm. However, unlike Grover’s
algorithm, whose space requirement is determined only by the power budget and max-
imum operating temperature, the classical algorithm also requires memory that scales,
like the time, with the squareroot of the size of the search space.

6 Factors associated with the cost of oracle queries

The asymptotic complexities given in previous sections ignore the computational com-
plexity of individual oracle queries. Most of the results of previous sections remain
substantively similar if these factors are included. We will model each oracle query as
a circuit with depth d0, width m0, and total gates g0.

In the case of powered Brownian computation, the effect of these factors is fairly
straightforward. The memory imposed limit on paralleism (and number of table en-

tries in the case of BHT) is now pmax = O
(
M
m0

)
. Likewise, if t0 is the time per query

required to complete the computation in time t, we will now require an energy per gate

of ε = O
(
d0
t0

)
. We must also ensure that all the bits or qubits in the circuit advance

through it roughly synchronously. This can be done, for example, by associating a clock
state of size O (log(d0)) to each bit or qubit in the oracle circuit, and imposing a restor-
ing potential proportional to the squared difference of the clock states of neighboring
qubits. This will tend to couple the clock states of nearby qubits, but will not dissipate
any net energy. As with other energy barriers ensuring correct computation, this po-
tential need only extend logarithmically far from the equilibrium point, relative to the
total size of the computation. We will generally ignore the logarithmic memory cost of
the clock state and the logarithmic computational costs associated with creating inter-
actions between the clock state, but in more detailed models, they may be subsumed
into m0 and g0 respectively. Finally, we must take into account the number of gates
required to perform an oracle query, g0. Making these substitutions into equations 2,
and 4 gives the following energy costs for quantum and classical collision search:

Equant = O

p · g0
√
m0N

Mp
· d0

√
m0N
Mp

t

 = O

(
g0m0d0N

Mt

)
; (13)

Ecl = O

(
M

m0
· g0

m0

√
N

M
· m0d0

√
N

Mt

)
= O

(
g0m0d0N

Mt

)
. (14)
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Again, we find the classical and quantum complexities to be identical. In both cases,

the useful memory size is bounded above by O
(
m0

√
N
)

.

Similarly, we may make the same substitutions in equations 5 and 6 to include these
factors in the per gate and total energy cost Grover search:

εquant = O

d0
√

m0N
M

t

 ; (15)

Equant = O

M

m0
· g0

√
m0N

M
·
d0

√
m0N
M

t

 = O

(
g0d0N

t

)
. (16)

In the case of unpowered Brownian computation, we must calculate the temperature
T required for random Brownian motion to power the traversal of an oracle circuit of
depth d0 and containing g0 gates in time t0. To do this, we create a random variable, x
indicating the total number of gates that have been completed at a time t. We expect
that x will obey the usual formula for Brownian motion, 〈x2〉 = Dt, for some D,
which will depend on T , g0, and d0. We will then require Dt0 = O

(
g20
)
. It remains

to determine the scaling of D: Note that at any given time, on average O
(
g0
d0

)
gates

will be exposed to activation by thermal noise. (The remaining gates will be disallowed
by the clock states associated with their input/output bits.) Each of these gates is
expected to contribute O(Tdt) to d〈x2〉. The coupling potential between neighboring
clock states will also drive the activation of individual gates, but it should have no
net effect on x, since every gate driven forward by the couplining potential will be

counterbalanced by another gate driven backwards. Thus we find that D = O
(
Tg0
d0

)
and therefore T = O

(
g0d0
t0

)
.

We may now apply this analysis to equations 7 and 8. Since, in order to complete a
preimage search of size N in time, t with memory M , we need t0 = m0N

Mt , we find that:

Tcl = O

(
g0m0d0N

Mt

)
, (17)

and,

Ecl = O

(
M · g0m0d0N

Mt

)
= O

(
g0m0d0N

t

)
= O (m0Equant) . (18)

Note that, when we include cost factors associated with the size and computational
complexity of oracle queries, the mostly unpowered randomized preimage search is
more energy intensive than Grover’s algorithm by a factor of O(m0). Nonetheless, this
factor is generally expected to be logarithmic in N and may easily be overwhelmed by
the various costs associated with implementing fault tolerant quantum computation.
We may also consider the fixed power and temperature scenario discussed in section
5. In this case, equations 9, 10, 11, and 12 become:

tcl = O

(√
g0m0d0N

P

)
(19)

Mcl = O

(√
g0m0d0NP

T

)
(20)
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tquant = O

(√
g0d0N

P

)
(21)

Mquant = O

(
m0d0P

g0T 2

)
(22)

7 Conclusion
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